
A Knowledge Discovery Case Study of Software Quality Prediction Based
on Classification Models：ISBSG Database

Xiao Wang1, Lingling Zhang 1,2,*,Yuehua Zhang2,3, Ying Liu2,Yong Shi2

1 School of Management, Graduate University of Chinese Academy of Sciences, Beijing (100190), China

2 Research Center on Fictitious Economy and Data Science, CAS, Beijing (100190), China
3 School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences,

Beijing (100190), China

mumpop@163.com, zhangll@gucas.ac.cn, zyh4530@163.com, yingliu@gucas.ac.cn, yshi@gucas.ac.cn
*Corresponding author: Phn +86-13661125028,E-mail:zll933@163.com, zhangll@gucas.ac.cn

Keywords: software trustworthy, classification, ISBSG database

Abstract. With the development of information technology, software has played an indispensable role in
modern society. However, the quality of software is influenced by many un-trustworthy factors. This paper
applies C5.0, SVM and neutral network on ISBSG database to predict the quality of software. The experimental
result shows that the quality level of software can be well predicted by C5.0 model. Besides, several useful
conclusions have been drawn from the experimental result.
1 Introduction
With the development of information technology, software has played an indispensable role in modern society,
especially in the large-scale distributed network systems including military, aerospace, financial systems.
However, software may crash and bring variety of failures and faults which lead to huge loss.

In late 80's and early 90's, software security has been a main issue in the international software research
community. In 1994, Trusted Software Methodology (TSM) Project, which has been participated by a number of
government and commercial organizations in the United States, identified that trustworthiness was highly
dependent on management decision, technology decision, and established requirement sets（Amoroso，1994）.

As the US Department of Commerce National Institute of Standards and Technology commissioned in 2002,
software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59
billion annually, or about 0.6% of the gross domestic product. As we can see, software quality has been an issue
of concern not only in theory but also in reality.
2 Research Background
2.1 Related Study of Software Trustworthiness
The existing research on software worthiness is not so much, but there exist many relevant studies. Since the
1980s, a great deal of research and development works have been done on the definition of trustworthiness and
relevant methods to improve software trustworthiness. Before that, people had different ideas on the definitions
of software trustworthiness. The evaluation guidelines for the credibility of the computer system, which was
proposed by the National Computer Security Center (NCSC) of United States, only set focus on security
（Department of Defense，1985）. Trusted Software Methodology (TSM) Project, which has been participated
by a number of government and commercial organizations in the United States, set forth that trustworthiness
was highly dependent on management decision, technology decision, and established requirement sets
（Amoroso，1994）.

In fact, the implementation of information system is extremely complex, which is the combination of
information technology and management. Although automated tools provide a lot of aid, the design and
production of software are mainly done by people. Many researchers believe that human is a key factor to
ensure software trustworthiness. Ewusi-Mensah and Przasanyskid’s research on the failure of software projects
showed that the impact of management on R&D is global and the affect of technology is only partial
（Ewusi-Mensah，1994）. Doherty, King and others found that in the process of large software development,
organization is even more important than technical issues（Doherty，1998）. Weinberg believed that software
programming is not only social activities but also individual activities. Individual programming activities
include intelligence, problem-solving ability, motivation, experience and others. Social programming activities
include the composition and communication of programming groups, team and project（Weinberg，1971）.
Boehm proposed "software productivity improvement opportunity tree" which includes personnel and
organizational factors as the primary opportunities for improving productivity. The factors are composed of
personnel arrangements, equipment and management.（Weinberg，1971；Wheeler，1990）

mailto:zhangll@gucas.ac.cn
mailto:yingliu@gucas.ac.cn
mailto:yshi@gucas.ac.cn

2.2 Knowledge Discovery Method Based on Classification Models
Classification is suitable way to handle evaluation of software worthiness and there exist a loft of mature
classification algorithms. Due to the fast training speed and well-established default parameter setting（Opitz，
1999）, decision tree is one of the most widely used techniques for classification and prediction. Its accuracy is
competitive with other learning methods, and it is very efficient（Opitz，2007）.

Based on information gain, ID3 is the most influential decision tree algorithm（Opitz，2007）. However,
information gain measure is biased towards attributes with a large number of values. As a successor of ID3,
C4.5 uses gain ratio to overcome this shortcoming.

C5.0 is based on the same decision tree building algorithm and includes all the features of C4.5, while
introducing many new technologies, reducing the complexity and improving efficiency. Therefore, in practice
C4.5 can be completely replaced by C5.0.

Neural networks and SVMs can also be used for prediction and classification. Although the training time of
them may be long, they are highly accurate and extensively applied across numerous domains（Jiawei Han,
2006）.
3 Knowledge Discovery Model of Software Quality Prediction
From the current study above, a lot of attention has been paid to the importance of software and the other factors
such as humans and management have been focused on. However, the existing software trustworthiness
evaluation is still not mature enough in terms of evaluation modeling and methods. Because the analysis of a
certain individual attribute is often separated with another. Compared with current one-sided analysis, an overall
evaluation is needed by programmers and managers so as to detect software defects and predict software quality.

Because the existing researches are about one unique aspect of factors and there is still lack of an effective
model which can reveal the relation between the software quality and the overall development attributes, we try
to reveal the relation between software quality and its overall development features. This paper applies several
classification algorithms on ISBSG database to classify and predict the quality level of software.

The remained of this paper is organized as follows. In Section 2, we introduce current research about software
trustworthiness and classification models used in the experiment. In Section 3, we give an overview of ISBSG
database and the criteria for choosing attributes in software development process. Section 4 presents the
experimental process and result. The last section is the summary of this paper.
4 Data Description and Preprocessing: ISBSG Database
The data set used in our investigation represents software projects from the ISBSG database Release 10, which
refers to the International Software Benchmarking Standards Group repository. The projects in the ISBSG
repository cover a broad cross-section of the software industry. The data can be used for estimating,
benchmarking, trend awareness, comparison of platforms/languages/tools or assisting software process
improvement program.Release 10 (released in January 2007) consists of 4,017 projects from over twenty-five
countries around the world, with 60% of the projects being less than 7 years old.

In order to make our analysis meaningful we had to remove projects according to the following criteria:
• Remove projects whose total defeccts delivered are missing. This would mean that it is impossible to

distinguish whether the software project is successful or not.
• As in [11]（Mendes，2005）, remove projects if they were not assigned a high data quality rating (A or B)

by ISBSG.
Set class label for each project. The software project is classified into “high quality” as long as one of the

following conditions is satisfied：the extreme defects exist , the number of major defects is more than 1 or the
number of minor defects is more than 10 , and the others are classified into “low quality”. We analyzed 746
projects: 508 “high quality” and 238 “low quality”.

The ISBSG repository provides 106 variables. This subset was further reduced based on the exclusion
criteria shown below:

• Variables that had more than 60% of their values missing were excluded.
• Variables that were obtained in different methods were excluded, in case the different evaluation

standards caused deviation.
The data needs to be processed further in view of the following principles:
• Set dummy variables (0/1) for the categorical variables. Specially, the dummy variables set for variables

that contained many categories are based on the combined categories rather than actual categories, in order to
express relevant situation effectively.

• For continuous variables, replace the missing values with mean if there is not big deviation between
values; otherwise, replace the missing ones with median. For category variable, classify the variables into most
classes.

• Transform development time into time period measured in years.
At last, 53 variables are left. The basic descriptions of these variables are presented in Table1.

Table 1 Statistical description of 53 variables left
Location Variability

 Mean Median Mode Std
Deviation

Variance Rang
e

Interqu
artile
Range

Data Quality
Rating

0.624665 1 1 0.48453 0.23477 1 1

0.675603 1 1 0.46846 0.21946 1 1
0.260054 0 0 0.43896 0.19268 1 1

UFP rating

0.064343 0 0 0.24553 0.06028 1 0
Count
Approach

0.75067 1 1 0.43292 0.18742 1 0

Normalised
Level 1 PDR
(ufp)

16.22589 13.05 16.22589 26.03172 677.65058 330.4 10.6258
9

Normalised
PDR (ufp)

17.36753 12.1 17.36753 27.03379 730.826 330.4 11.3675
3

Pre 2002 PDR
(afp)

13.58643 10.35 13.58643 19.86334 394.55214 327.3 8.5

Project
Elapsed Time

9.785286 7 9.785286 17.80841 317.13936 320.9 6

Effort Build 3073.276 3073.27
6

3073.276 4030 16239143 63848 1733

Effort Test 1368.697 1368.69
7

1368.697 2123 4506038 37332 778.696
53

Effort
unphased

2659.172 499.5 0 6104 37262703 61398 2239

Development
Type

0.568365 1 1 0.49564 0.24566 1 1

0.150134 0 0 0.35744 0.12777 1 0 Organisation
type 0.849866 1 1 0.35744 0.12777 1 0

0.857909 1 1 0.34938 0.12206 1 0 Business Area
Type 0.142091 0 0 0.34938 0.12206 1 0

0.351206 0 0 0.47767 0.22817 1 1 Application
Type

0.648794 1 1 0.47767 0.22817 1 1
0.215818 0 0 0.41166 0.16947 1 0
0.117962 0 0 0.32278 0.10419 1 0

Architecture

0.66622 1 1 0.47188 0.22267 1 1
Client
Server?

0.741287 1 1 0.43822 0.19204 1 1

Functional
Sizing
Technique

0.687668 1 1 0.46376 0.21507 1 1

0.257373 0 0 0.43748 0.19139 1 1
0.190349 0 0 0.39284 0.15432 1 0

0.072386 0 0 0.2593 0.06724 1 0

Development
Platform

0.479893 0 0 0.49993 0.24993 1 1
0.63807 1 1 0.48088 0.23125 1 1
0.296247 0 0 0.45691 0.20876 1 1

Language
Type

0.20876 0 0 0.24789 0.06145 1 0
0.158177 0 0 0.36515 0.13334 1 0
0.209115 0 0 0.40695 0.16561 1 0
0.146113 0 0 0.35346 0.12493 1 0

Primary
Programming
Language

0.486595 0 0 0.50016 0.25016 1 1
1st Hardware 0.037534 0 0 0.19019 0.03617 1 0
1st Operating 0.245308 0 0 0.43056 0.18538 1 0

System
0.071046 0 0 0.25707 0.06609 1 0
0.100536 0 0 0.30092 0.09055 1 0
0.198391 0 0 0.39906 0.15925 1 0

1st Data Base
System

0.630027 1 1 0.48312 0.23341 1 1
CASE Tool
Used

0.776139 1 1 0.41711 0.17398 1 0

Used
Methodology

0.906166 1 1 0.29179 0.08514 1 0

0.743968 1 1 0.43673 0.19074 1 1
0.087131 0 0 0.28222 0.07965 1 0

How
Methodology
Acquired 0.168901 0 0 0.37492 0.14056 1 0

0.115282 0 0 0.31958 0.10213 1 0
0.703753 1 1 0.45691 0.20876 1 1
0.095174 0 0 0.29365 0.08623 1 0

Intended
Market

0.085791 0 0 0.28024 0.07854 1 0
Resource
Level

1.879357 1 1 1.3377 1.78945 3 3

Max Team
Size

8.943767 7 7 13.56192 183.92563 308 3

2010-year 9.55764 10 6 3.86136 14.9101 15 6

5 Model Application in Software Quality Prediction
After preprocessing the original database, we finally get 746 records, including 238 first-class records and 508
second-class ones. According to prior experience, unbalanced data has a great impact on the classification
accuracy. So we adapt under-sampling method to choose training dataset and testing dataset so as to eliminate
the influence.

We introduce C5.0 model to analyze and predict the relation between software quality and its development
attributes. As a comparison, neutral network and SVM are also used for classification. The classification rates of
these models are shown in Table 2.

Table2. Classification rates of C5.0, SVM and neutral network on ISBSG

 accuracy
C5.0 77.88%
SVM 69.17%
Neutral Network 70.43%

From the result, we can observe that the accuracy of C5.0 is the highest of the three models: 77.88%. And
neutral network performs a little better than SVM on ISBSG database. This means that when we deal with
software projects, C5.0 is the most effective and we should adapt this method to classify software quality. On
the basis of our research, it is reasonable to choose this model while facing relevant problems.

After getting the classification model of ISBSG database, we can analyze the quality of software depending
on the known model and predict software trustworthiness. This provides a useful tool for managers to
distinguish whether a certain software project would be successful or not before it is implemented. Undoubtedly,
it can significantly reduce the potential cost of project failure.

Besides, the result will also be influenced by parameters. One of them is the threshold value we set to classify
the quality level of projects. Result may vary when the value changes. Robustness test has been carried out to
eliminate the effect to the greatest extent.

However, the overall accuracy is not satisfactory to a certain extent. It may be due to the specific feature of
the dataset. We will try the other classifiers on this dataset in our future research to testify our assumption.
6 Conclusions
In this paper, we carried out a case study that applied C5.0, SVM and neutral network model to predict the
quality of software. The data we used is ISBSG database, which contains 4,017 records and 106 attributes. After
preprocessing, 746 records and 53 attributes remained.

On the one hand, based on the experimental result, the quality level of software was well predicted and C5.0
model performed best on testing dataset compared with SVM and neutral networks.

On the other hand, the model obtained by C5.0 model can be used to predict the quality of software as a

reference for project managers.
Acknowledgment
This work was partially supported by the President Fund of Graduate University of Chinese Academy of
Sciences（GUCAS)（A）(Grant No.085102HN00), National Natural Science Foundation of China (Grant
No.71071151,70921061).
References
[1] E. Amoroso, C. Taylor, J. Watson, J. Weiss, 1994, A process-oriented methodology for assessing and
improving software trustworthiness,Proceedings of the 2nd ACM Conference on Computer and communications
security, Virginia, USA
[2] Department of Defense, National Computer Security Center,1985, Trusted Computer System Evaluation
Criteria, DOD 5200.28 STD
[3] Ewusi-Mensah K, Przasanyski Z. , 1994, “Factors contributing to the abandonment of information system
development project”, Journal Of Information Technology, 9, 185~201
[4] Doherty N F, King M. ,1998, “The consideration of organizational issues during the system development
process: an empirical analysis”, Behavior & Information technology, 17, 1, 41~51
[5] Weinberg, G M. , 1971, Psychology of Computer programming, Van Nostrand Reinhold, New York
[6] Boehm B W. , 1987, “Improving Software Productivity”, IEEE Computer,20, 9, 43~57
[7] Wheeler, D.J. and Chambers, D.S., 1990, Understanding Statistical Process Control, Addison-Wesley,
BOSTON, MA
[8] D. Opitz, R. Maclin, 1999, “Popular ensemble methods: An empirical study”, Journal of Artificial
Intelligence Research, 11, 169-198
[9] Bing Liu, 2007, Web data ming: exploring hyperlinks contents and usage, Springer,Verlag Berlin Heidelberg
[10]Jiawei Han, Micheline Kamber, 2006, Data mining: concepts and techniques(second edition), Morgan
Kaufmann, San Francisco, CA
[11] Mendes Emilia, Lokan Chris, Harrison Robert, Triggs Christopher, 2005, “A Replicated Comparison of
Cross-Company and Within-Company Effort Estimation Models Using the ISBSG Database”. 11th IEEE
International Software Metrics Symposium (METRICS 2005), 36

http://researchspace.auckland.ac.nz/browse?value=Mendes,%20Emilia&type=author
http://researchspace.auckland.ac.nz/browse?value=Lokan,%20Chris&type=author
http://researchspace.auckland.ac.nz/browse?value=Harrison,%20Robert&type=author
http://researchspace.auckland.ac.nz/browse?value=Triggs,%20Christopher&type=author

	6 Conclusions
	Acknowledgment
	References

